Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Seizure ; 117: 183-192, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38452614

RESUMO

For the one third of people with epilepsy whose seizures are not controlled with medications, targeting the seizure focus with neurostimulation can be an effective therapeutic strategy. In this focused review, we summarize a discussion of targeted neurostimulation modalities during a workshop held in Frankfurt, Germany in September 2023. Topics covered include: available devices for seizure focus stimulation; alternating current (AC) and direct current (DC) stimulation to reduce focal cortical excitability; modeling approaches to simulate DC stimulation; reconciling the efficacy of focal stimulation with the network theory of epilepsy; and the emerging concept of 'neurostimulation zones,' which are defined as cortical regions where focal stimulation is most effective for reducing seizures and which may or may not directly involve the seizure onset zone. By combining experimental data, modeling results, and clinical outcome analysis, rational selection of target regions and stimulation parameters is increasingly feasible, paving the way for a broader use of neurostimulation for epilepsy in the future.

2.
bioRxiv ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496668

RESUMO

Objectives: Temporal lobe epilepsy (TLE) is commonly associated with mesiotemporal pathology and widespread alterations of grey and white matter structures. Evidence supports a progressive condition although the temporal evolution of TLE is poorly defined. This ENIGMA-Epilepsy study utilized multimodal magnetic resonance imaging (MRI) data to investigate structural alterations in TLE patients across the adult lifespan. We charted both grey and white matter changes and explored the covariance of age-related alterations in both compartments. Methods: We studied 769 TLE patients and 885 healthy controls across an age range of 17-73 years, from multiple international sites. To assess potentially non-linear lifespan changes in TLE, we harmonized data and combined median split assessments with cross-sectional sliding window analyses of grey and white matter age-related changes. Covariance analyses examined the coupling of grey and white matter lifespan curves. Results: In TLE, age was associated with a robust grey matter thickness/volume decline across a broad cortico-subcortical territory, extending beyond the mesiotemporal disease epicentre. White matter changes were also widespread across multiple tracts with peak effects in temporo-limbic fibers. While changes spanned the adult time window, changes accelerated in cortical thickness, subcortical volume, and fractional anisotropy (all decreased), and mean diffusivity (increased) after age 55 years. Covariance analyses revealed strong limbic associations between white matter tracts and subcortical structures with cortical regions. Conclusions: This study highlights the profound impact of TLE on lifespan changes in grey and white matter structures, with an acceleration of aging-related processes in later decades of life. Our findings motivate future longitudinal studies across the lifespan and emphasize the importance of prompt diagnosis as well as intervention in patients.

3.
J Imaging Inform Med ; 37(1): 412-427, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343221

RESUMO

This paper presents a fully automated pipeline using a sparse convolutional autoencoder for quality control (QC) of affine registrations in large-scale T1-weighted (T1w) and T2-weighted (T2w) magnetic resonance imaging (MRI) studies. Here, a customized 3D convolutional encoder-decoder (autoencoder) framework is proposed and the network is trained in a fully unsupervised manner. For cross-validating the proposed model, we used 1000 correctly aligned MRI images of the human connectome project young adult (HCP-YA) dataset. We proposed that the quality of the registration is proportional to the reconstruction error of the autoencoder. Further, to make this method applicable to unseen datasets, we have proposed dataset-specific optimal threshold calculation (using the reconstruction error) from ROC analysis that requires a subset of the correctly aligned and artificially generated misalignments specific to that dataset. The calculated optimum threshold is used for testing the quality of remaining affine registrations from the corresponding datasets. The proposed framework was tested on four unseen datasets from autism brain imaging data exchange (ABIDE I, 215 subjects), information eXtraction from images (IXI, 577 subjects), Open Access Series of Imaging Studies (OASIS4, 646 subjects), and "Food and Brain" study (77 subjects). The framework has achieved excellent performance for T1w and T2w affine registrations with an accuracy of 100% for HCP-YA. Further, we evaluated the generality of the model on four unseen datasets and obtained accuracies of 81.81% for ABIDE I (only T1w), 93.45% (T1w) and 81.75% (T2w) for OASIS4, and 92.59% for "Food and Brain" study (only T1w) and in the range 88-97% for IXI (for both T1w and T2w and stratified concerning scanner vendor and magnetic field strengths). Moreover, the real failures from "Food and Brain" and OASIS4 datasets were detected with sensitivities of 100% and 80% for T1w and T2w, respectively. In addition, AUCs of > 0.88 in all scenarios were obtained during threshold calculation on the four test sets.

4.
PLoS One ; 19(2): e0296843, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38330027

RESUMO

In drug-resistant focal epilepsy, detecting epileptogenic lesions using MRI poses a critical diagnostic challenge. Here, we assessed the utility of MP2RAGE-a T1-weighted sequence with self-bias correcting properties commonly utilized in ultra-high field MRI-for the detection of epileptogenic lesions using a surface-based morphometry pipeline based on FreeSurfer, and compared it to the common approach using T1w MPRAGE, both at 3T. We included data from 32 patients with focal epilepsy (5 MRI-positive, 27 MRI-negative with lobar seizure onset hypotheses) and 94 healthy controls from two epilepsy centres. Surface-based morphological measures and intensities were extracted and evaluated in univariate GLM analyses as well as multivariate unsupervised 'novelty detection' machine learning procedures. The resulting prediction maps were analyzed over a range of possible thresholds using alternative free-response receiver operating characteristic (AFROC) methodology with respect to the concordance with predefined lesion labels or hypotheses on epileptogenic zone location. We found that MP2RAGE performs at least comparable to MPRAGE and that especially analysis of MP2RAGE image intensities may provide additional diagnostic information. Secondly, we demonstrate that unsupervised novelty-detection machine learning approaches may be useful for the detection of epileptogenic lesions (maximum AFROC AUC 0.58) when there is only a limited lesional training set available. Third, we propose a statistical method of assessing lesion localization performance in MRI-negative patients with lobar hypotheses of the epileptogenic zone based on simulation of a random guessing process as null hypothesis. Based on our findings, it appears worthwhile to study similar surface-based morphometry approaches in ultra-high field MRI (≥ 7 T).


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Epilepsias Parciais/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/diagnóstico por imagem
5.
Clin Neurophysiol ; 156: 4-13, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832322

RESUMO

OBJECTIVE: To determine the effect of inverse methods and timepoints of interictal epileptic discharges (IEDs) used for high-density electric source imaging (hd-ESI) in pharmacoresistant focal epilepsies. METHODS: We retrospectively evaluated the hd-ESI and [18F]fluorodeoxyglucose positron emission tomography (18FDG-PET) of 21 operated patients with pharmacoresistant focal epilepsy (Engel I). Volumetric hd-ESI was performed with three different inverse methods such as the inverse solution linearly constrained minimum variance (LCMV, a beamformer method), standardized low resolution electromagnetic tomography (sLORETA) and weighted minimum-norm estimation (wMNE) and at different IED phases. Hd-ESI accuracy was determined by volumetric overlap and distance between hd-ESI source maximum, as well as 18FDG-PET hypometabolic region relative to the resection zone (RZ). RESULTS: In our cohort, the shortest distances and greatest volumetric overlaps to the RZ were found in the half-rise and peak-phase for all inverse methods. The distance to the RZ was not different between the centroid of the clinical hypothesis-based cluster and the source maximum in peak-phase. However, the distance of the hypothesis-based cluster was significantly shorter compared to the cluster selected by the smallest p-value. CONCLUSIONS: Hd-ESI provides the greatest accuracy in determining the RZ at the IED half-rise and peak-phase for all applied inverse methods, whereby sLORETA and LCMV were equally accurate. SIGNIFICANCE: Our results offer guidance in selecting inverse methods and IED phases for hd-ESI, compare the performance of hd-ESI and 18FDG-PET and encourage future studies in investigating the relationship between interictal ESI and 18FDG-PET hypometabolism.


Assuntos
Epilepsias Parciais , Epilepsia , Humanos , Eletroencefalografia/métodos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Fluordesoxiglucose F18 , Epilepsia/cirurgia
6.
Neuroimage Clin ; 39: 103474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441820

RESUMO

BACKGROUND AND OBJECTIVES: Genetic generalized epilepsy (GGE) is the most common form of generalized epilepsy. Although individual patients with GGE typically present without structural alterations, group differences have been demonstrated in GGE and some GGE subtypes like juvenile myoclonic epilepsy (GGE-JME). Previous studies usually involved only small cohorts from single centers and therefore could not assess imaging markers of multiple GGE subtypes. METHODS: We performed a diffusion MRI mega-analysis in 192 participants consisting of 126 controls and 66 patients with GGE from four different cohorts and two different epilepsy centers. We applied whole-brain multi-site harmonization and analyzed fractional anisotropy (FA), as well as mean, radial and axial diffusivity (MD/RD/AD) to assess differences between controls, patients with GGE and the common GGE subtypes, i.e. GGE with generalized tonic-clonic seizures only (GGE-GTCS), GGE-JME and absence epilepsy (GGE-AE). We also analyzed relationships with patients' response to anti-seizure-medication (ASM). RESULTS: Relative to controls, we identified decreased anisotropy and increased RD in patients with GGE. We found no significant effects of disease duration, age of onset or seizure frequency on diffusion metrics. Patients with JME had increased MD and RD when compared to controls, while patients with GGE-GTCS showed decreased MD/AD when compared to controls. Compared to patients with GGE-AE, patients with GGE-GTCS had lower AD/MD. Compared to patients with GGE-GTCS, patients with GGE-JME had higher MD/RD and AD. Moreover, we found lower FA in patients with refractory when compared to patients with non-refractory GGE in the right cortico-spinal tract, but no significant differences in patients with active versus controlled epilepsy. DISCUSSION: We provide evidence that clinically defined GGE as a whole and GGE-subtypes harbor marked microstructural differences detectable with diffusion MRI. Moreover, we found an association between microstructural changes and treatment resistance. Our findings have important implications for future full-resolution multi-site studies when assessing GGE, its subtypes and ASM refractoriness.


Assuntos
Epilepsia Tipo Ausência , Epilepsia Generalizada , Epilepsia Mioclônica Juvenil , Humanos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética
7.
Neuroimage ; 278: 120275, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451375

RESUMO

Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.


Assuntos
Longevidade , Magnetoencefalografia , Humanos , Adulto , Estudos Transversais , Encéfalo/fisiologia , Mapeamento Encefálico
8.
Brain Topogr ; 36(5): 750-765, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37354244

RESUMO

Genetic generalized epilepsy (GGE) is conceptualized as a brain disorder involving distributed bilateral networks. To study these networks, simultaneous EEG-fMRI measurements can be used. However, inside-MRI EEG suffers from strong MR-related artifacts; it is not established whether EEG-based metrics in EEG-fMRI resting-state measurements are suitable for the analysis of group differences at source-level. We evaluated the impact of the inside-MR measurement condition on statistical group comparisons of EEG on source-level power and functional connectivity in patients with GGE versus healthy controls. We studied the cross-modal spatial relation of statistical group differences in seed-based FC derived from EEG and parallel fMRI. We found a significant increase in power and a frequency-specific change in functional connectivity for the inside MR-scanner compared to the outside MR-scanner condition. For power, we found reduced group difference between GGE and controls both in terms of statistical significance as well as effect size. Group differences for ImCoh remained similar both in terms of statistical significance as well as effect size. We found increased seed-based FC for GGE patients from the thalamus to the precuneus cortex region in fMRI, and in the theta band of simultaneous EEG. Our findings suggest that the analysis of EEG functional connectivity based on ImCoh is suitable for MR-EEG, and that relative group difference in a comparison of patients with GGE against controls are preserved. Spatial correspondence of seed-based FC group differences between the two modalities was found for the thalamus.


Assuntos
Epilepsia Generalizada , Humanos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Imageamento por Ressonância Magnética , Lobo Parietal , Vias Neurais , Eletroencefalografia
9.
Sci Data ; 10(1): 211, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059732

RESUMO

Image templates are a common tool for neuroscience research. Often, they are used for spatial normalization of magnetic resonance imaging (MRI) data, which is a necessary procedure for analyzing brain morphology and function via voxel-based analysis. This allows the researcher to reduce individual shape differences across images and make inferences across multiple subjects. Many templates have a small field-of-view typically focussed on the brain, limiting the use for applications requiring detailed information about other extra-cranial structures in the head and neck area. However, there are several applications where such information is important, for example source reconstruction of electroencephalography (EEG) and/or magnetoencephalography (MEG). We have constructed a new template based on 225 T1w and FLAIR images with a big field-of-view that can serve both as target for across subject spatial normalization as well as a basis to build high-resolution head models. This template is based on and iteratively re-registered to the MNI152 space to provide maximal compatibility with the most commonly used brain MRI template.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Encéfalo/anatomia & histologia , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Crânio
10.
Epilepsia Open ; 8(3): 785-796, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36938790

RESUMO

OBJECTIVE: Presurgical high-density electric source imaging (hdESI) of interictal epileptic discharges (IEDs) is only used by few epilepsy centers. One obstacle is the time-consuming workflow both for recording as well as for visual review. Therefore, we analyzed the effect of (a) an automated IED detection and (b) the number of IEDs on the accuracy of hdESI and time-effectiveness. METHODS: In 22 patients with pharmacoresistant focal epilepsy receiving epilepsy surgery (Engel 1) we retrospectively detected IEDs both visually and semi-automatically using the EEG analysis software Persyst in 256-channel EEGs. The amount of IEDs, the Euclidean distance between hdESI maximum and resection zone, and the operator time were compared. Additionally, we evaluated the intra-individual effect of IED quantity on the distance between hdESI maximum of all IEDs and hdESI maximum when only a reduced amount of IEDs were included. RESULTS: There was no significant difference in the number of IEDs between visually versus semi-automatically marked IEDs (74 ± 56 IEDs/patient vs 116 ± 115 IEDs/patient). The detection method of the IEDs had no significant effect on the mean distances between resection zone and hdESI maximum (visual: 26.07 ± 31.12 mm vs semi-automated: 33.6 ± 34.75 mm). However, the mean time needed to review the full datasets semi-automatically was shorter by 275 ± 46 min (305 ± 72 min vs 30 ± 26 min, P < 0.001). The distance between hdESI of the full versus reduced amount of IEDs of the same patient was smaller than 1 cm when at least a mean of 33 IEDs were analyzed. There was a significantly shorter intraindividual distance between resection zone and hdESI maximum when 30 IEDs were analyzed as compared to the analysis of only 10 IEDs (P < 0.001). SIGNIFICANCE: Semi-automatized processing and limiting the amount of IEDs analyzed (~30-40 IEDs per cluster) appear to be time-saving clinical tools to increase the practicability of hdESI in the presurgical work-up.


Assuntos
Epilepsia , Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Estudos de Viabilidade , Fluxo de Trabalho , Imageamento por Ressonância Magnética/métodos , Epilepsia/diagnóstico
11.
Front Neurol ; 13: 881369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928131

RESUMO

The objective of the study was to characterize the pattern of cognitive dysfunction in patients with multiple system atrophy (MSA) applying a standardized neuropsychological assessment. A total of 20 patients with the diagnosis of probable or possible MSA were enrolled for neuropsychological assessment applying the CERAD plus battery. All patients were tested at baseline and 14/20 patients received additional follow-up assessments (median follow-up of 24 months). Additionally, relationship between cortical thickness values/subcortical gray matter volumes and CERAD subitems was evaluated at baseline in a subgroup of 13/20 patients. Trail Making Test (TMT) was the most sensitive CERAD item at baseline with abnormal performance (z-score < -1.28) in one or both pathological TMT items (TMT-A, TMT-B) in 60% of patients with MSA. Additionally, there was a significant inverse correlation between the volume of the left and the right accumbens area and the TMT A item after adjusting for age (left side: p = 0.0009; right side p = 0.003). Comparing both subtypes, patients with MSA-C had significant lower values in phonemic verbal fluency (p = 0.04) and a trend for lower values in semantic verbal fluency (p = 0.06) compared to MSA-P. Additionally, patients with MSA-C showed significantly worse performance in the TMT-B task (p = 0.04) and a trend for worse performance in the TMT-A task (p = 0.06). Concerning longitudinal follow-up, a significant worsening in the TMT-B (p = 0.03) can be reported in MSA. In conclusion, frontal-executive dysfunction presents the hallmark of cognitive impairment in MSA.

12.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
13.
Epilepsia ; 63(8): 2081-2095, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35656586

RESUMO

OBJECTIVE: Recent work has shown that people with common epilepsies have characteristic patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a large multicenter cross-sectional cohort, we investigated whether regional morphometric changes occur in a sequential manner, and whether these changes in people with mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features. METHODS: We extracted regional measures of cortical thickness, surface area, and subcortical brain volumes from T1-weighted (T1W) magnetic resonance imaging (MRI) scans collected by the ENIGMA-Epilepsy consortium, comprising 804 people with MTLE-HS and 1625 healthy controls from 25 centers. Features with a moderate case-control effect size (Cohen d ≥ .5) were used to train an event-based model (EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for associations between EBM disease stage and duration of epilepsy, age at onset, and antiseizure medicine (ASM) resistance. RESULTS: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, reduction in ipsilateral thalamus volume, and finally, increase in ipsilateral lateral ventricle volume. EBM stage was correlated with duration of illness (Spearman ρ = .293, p = 7.03 × 10-16 ), age at onset (ρ = -.18, p = 9.82 × 10-7 ), and ASM resistance (area under the curve = .59, p = .043, Mann-Whitney U test). However, associations were driven by cases assigned to EBM Stage 0, which represents MTLE-HS with mild or nondetectable abnormality on T1W MRI. SIGNIFICANCE: From cross-sectional MRI, we reconstructed a disease progression model that highlights a sequence of MRI changes that aligns with previous longitudinal studies. This model could be used to stage MTLE-HS subjects in other cohorts and help establish connections between imaging-based progression staging and clinical features.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Atrofia/patologia , Biomarcadores , Estudos Transversais , Epilepsia/complicações , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose/complicações
14.
Epilepsia ; 63(7): 1643-1657, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35416282

RESUMO

OBJECTIVE: Genetic generalized epilepsy (GGE) is characterized by aberrant neuronal dynamics and subtle structural alterations. We evaluated whether a combination of magnetic and electrical neuronal signals and cortical thickness would provide complementary information about network pathology in GGE. We also investigated whether these imaging phenotypes were present in healthy siblings of the patients to test for genetic influence. METHODS: In this cross-sectional study, we analyzed 5 min of resting state data acquired using electroencephalography (EEG) and magnetoencephalography (MEG) in patients, their siblings, and controls, matched for age and sex. We computed source-reconstructed power and connectivity in six frequency bands (1-40 Hz) and cortical thickness (derived from magnetic resonance imaging). Group differences were assessed using permutation analysis of linear models for each modality separately and jointly for all modalities using a nonparametric combination. RESULTS: Patients with GGE (n = 23) had higher power than controls (n = 35) in all frequencies, with a more posterior focus in MEG than EEG. Connectivity was also increased, particularly in frontotemporal and central regions in theta (strongest in EEG) and low beta frequencies (strongest in MEG), which was eminent in the joint EEG/MEG analysis. EEG showed weaker connectivity differences in higher frequencies, possibly related to drug effects. The inclusion of cortical thickness reinforced group differences in connectivity and power. Siblings (n = 18) had functional and structural patterns intermediate between those of patients and controls. SIGNIFICANCE: EEG detected increased connectivity and power in GGE similar to MEG, but with different spectral sensitivity, highlighting the importance of theta and beta oscillations. Cortical thickness reductions in GGE corresponded to functional imaging patterns. Our multimodal approach extends the understanding of the resting state in GGE and points to genetic underpinnings of the imaging markers studied, providing new insights into the causes and consequences of epilepsy.


Assuntos
Mapeamento Encefálico , Epilepsia Generalizada , Encéfalo , Mapeamento Encefálico/métodos , Estudos Transversais , Eletroencefalografia/métodos , Epilepsia Generalizada/diagnóstico por imagem , Epilepsia Generalizada/genética , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Fenótipo , Irmãos
15.
PLoS One ; 17(3): e0266107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324989

RESUMO

Interindividual anatomical differences in the human cortex can lead to suboptimal current directions and may result in response variability of transcranial electrical stimulation methods. These differences in brain anatomy require individualized electrode stimulation montages to induce an optimal current density in the targeted area of each individual subject. We aimed to explore the possible modulatory effects of 140 Hz transcranial alternating current stimulation (tACS) on the somatosensory cortex using personalized multi-electrode stimulation montages. In two randomized experiments using either tactile finger or median nerve stimulation, we measured by evoked potentials the plasticity aftereffects and oscillatory power changes after 140 Hz tACS at 1.0 mA as compared to sham stimulation (n = 17, male = 9). We found a decrease in the power of oscillatory mu-rhythms during and immediately after tactile discrimination tasks, indicating an engagement of the somatosensory system during stimulus encoding. On a group level both the oscillatory power and the evoked potential amplitudes were not modulated by tACS neither after tactile finger stimulation nor after median nerve stimulation as compared to sham stimulation. On an individual level we could however demonstrate that lower angular difference (i.e., differences between the injected current vector in the target region and the source orientation vector) is associated with significantly higher changes in both P20/N20 and N30/P30 source activities. Our findings suggest that the higher the directionality of the injected current correlates to the dipole orientation the greater the tACS-induced aftereffects are.


Assuntos
Estimulação Transcraniana por Corrente Contínua , Córtex Cerebral , Humanos , Masculino , Nervo Mediano , Córtex Somatossensorial/fisiologia , Tato , Estimulação Transcraniana por Corrente Contínua/métodos
16.
Brain ; 145(4): 1285-1298, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35333312

RESUMO

Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética
17.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
18.
Comput Biol Med ; 139: 104997, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753079

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI)-based morphometry and relaxometry are proven methods for the structural assessment of the human brain in several neurological disorders. These procedures are generally based on T1-weighted (T1w) and/or T2-weighted (T2w) MRI scans, and rigid and affine registrations to a standard template(s) are essential steps in such studies. Therefore, a fully automatic quality control (QC) of these registrations is necessary in big data scenarios to ensure that they are suitable for subsequent processing. METHOD: A supervised machine learning (ML) framework is proposed by computing similarity metrics such as normalized cross-correlation, normalized mutual information, and correlation ratio locally. We have used these as candidate features for cross-validation and testing of different ML classifiers. For 5-fold repeated stratified grid search cross-validation, 400 correctly aligned, 2000 randomly generated misaligned images were used from the human connectome project young adult (HCP-YA) dataset. To test the cross-validated models, the datasets from autism brain imaging data exchange (ABIDE I) and information eXtraction from images (IXI) were used. RESULTS: The ensemble classifiers, random forest, and AdaBoost yielded best performance with F1-scores, balanced accuracies, and Matthews correlation coefficients in the range of 0.95-1.00 during cross-validation. The predictive accuracies reached 0.99 on the Test set #1 (ABIDE I), 0.99 without and 0.96 with noise on Test set #2 (IXI, stratified w.r.t scanner vendor and field strength). CONCLUSIONS: The cross-validated and tested ML models could be used for QC of both T1w and T2w rigid and affine registrations in large-scale MRI studies.


Assuntos
Big Data , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Controle de Qualidade , Aprendizado de Máquina Supervisionado , Adulto Jovem
19.
Neuroimage Clin ; 31: 102765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34339947

RESUMO

Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with ("lesional") and without ("non-lesional") radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68-75%) compared to models to lateralize the side of TLE (56-73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67-75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68-76%) than models that stratified non-lesional patients (53-62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care.


Assuntos
Epilepsia do Lobo Temporal , Inteligência Artificial , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose/patologia , Máquina de Vetores de Suporte
20.
Epileptic Disord ; 23(4): 533-536, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34266813

RESUMO

Restructuring of healthcare services during the COVID-19 pandemic has led to lockdown of epilepsy monitoring units (EMUs) in many hospitals. The ad-hoc taskforce of the International League Against Epilepsy (ILAE) and the International Federation of Clinical Neurophysiology (IFCN) highlights the detrimental effect of postponing video-EEG monitoring of patients with epilepsy and other paroxysmal events. The taskforce calls for action for continued functioning of EMUs during emergency situations, such as the COVID-19 pandemic. Long-term video-EEG monitoring is an essential diagnostic service. Access to video-EEG monitoring of the patients in the EMUs must be given high priority. Patients should be screened for COVID-19, before admission, according to the local regulations. Local policies for COVID-19 infection control should be adhered to during the video-EEG monitoring. In cases of differential diagnosis in which reduction of antiseizure medication is not required, home video-EEG monitoring should be considered as an alternative in selected patients.


Assuntos
COVID-19 , Consenso , Eletroencefalografia , Epilepsia , Acesso aos Serviços de Saúde , Monitorização Neurofisiológica , Ambulatório Hospitalar , COVID-19/diagnóstico , COVID-19/prevenção & controle , Eletroencefalografia/normas , Epilepsia/diagnóstico , Epilepsia/terapia , Acesso aos Serviços de Saúde/organização & administração , Acesso aos Serviços de Saúde/normas , Humanos , Monitorização Neurofisiológica/normas , Ambulatório Hospitalar/organização & administração , Ambulatório Hospitalar/normas , Sociedades Médicas/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...